Papers
Topics
Authors
Recent
2000 character limit reached

Discovering Bias Associations through Open-Ended LLM Generations (2508.01412v1)

Published 2 Aug 2025 in cs.CL

Abstract: Social biases embedded in LLMs raise critical concerns, resulting in representational harms -- unfair or distorted portrayals of demographic groups -- that may be expressed in subtle ways through generated language. Existing evaluation methods often depend on predefined identity-concept associations, limiting their ability to surface new or unexpected forms of bias. In this work, we present the Bias Association Discovery Framework (BADF), a systematic approach for extracting both known and previously unrecognized associations between demographic identities and descriptive concepts from open-ended LLM outputs. Through comprehensive experiments spanning multiple models and diverse real-world contexts, BADF enables robust mapping and analysis of the varied concepts that characterize demographic identities. Our findings advance the understanding of biases in open-ended generation and provide a scalable tool for identifying and analyzing bias associations in LLMs. Data, code, and results are available at https://github.com/JP-25/Discover-Open-Ended-Generation

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com