Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Classification of Brain Tumors using Hybrid Deep Learning Models (2508.01350v1)

Published 2 Aug 2025 in eess.IV, cs.AI, and cs.CV

Abstract: The use of Convolutional Neural Networks (CNNs) has greatly improved the interpretation of medical images. However, conventional CNNs typically demand extensive computational resources and large training datasets. To address these limitations, this study applied transfer learning to achieve strong classification performance using fewer training samples. Specifically, the study compared EfficientNetV2 with its predecessor, EfficientNet, and with ResNet50 in classifying brain tumors into three types: glioma, meningioma, and pituitary tumors. Results showed that EfficientNetV2 delivered superior performance compared to the other models. However, this improvement came at the cost of increased training time, likely due to the model's greater complexity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.