Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Flow Matching for Probabilistic Learning of Dynamical Systems from Missing or Noisy Data (2508.01101v1)

Published 1 Aug 2025 in cs.LG, math.DS, and physics.comp-ph

Abstract: Learning dynamical systems is crucial across many fields, yet applying machine learning techniques remains challenging due to missing variables and noisy data. Classical mathematical models often struggle in these scenarios due to the arose ill-posedness of the physical systems. Stochastic machine learning techniques address this challenge by enabling the modeling of such ill-posed problems. Thus, a single known input to the trained machine learning model may yield multiple plausible outputs, and all of the outputs are correct. In such scenarios, probabilistic forecasting is inherently meaningful. In this study, we introduce a variant of flow matching for probabilistic forecasting which estimates possible future states as a distribution over possible outcomes rather than a single-point prediction. Perturbation of complex dynamical states is not trivial. Community uses typical Gaussian or uniform perturbations to crucial variables to model uncertainty. However, not all variables behave in a Gaussian fashion. So, we also propose a generative machine learning approach to physically and logically perturb the states of complex high-dimensional dynamical systems. Finally, we establish the mathematical foundations of our method and demonstrate its effectiveness on several challenging dynamical systems, including a variant of the high-dimensional WeatherBench dataset, which models the global weather at a 5.625{\deg} meridional resolution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube