Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ff4ERA: A new Fuzzy Framework for Ethical Risk Assessment in AI (2508.00899v1)

Published 28 Jul 2025 in cs.AI, cs.CY, cs.HC, and cs.LG

Abstract: The emergence of Symbiotic AI (SAI) introduces new challenges to ethical decision-making as it deepens human-AI collaboration. As symbiosis grows, AI systems pose greater ethical risks, including harm to human rights and trust. Ethical Risk Assessment (ERA) thus becomes crucial for guiding decisions that minimize such risks. However, ERA is hindered by uncertainty, vagueness, and incomplete information, and morality itself is context-dependent and imprecise. This motivates the need for a flexible, transparent, yet robust framework for ERA. Our work supports ethical decision-making by quantitatively assessing and prioritizing multiple ethical risks so that artificial agents can select actions aligned with human values and acceptable risk levels. We introduce ff4ERA, a fuzzy framework that integrates Fuzzy Logic, the Fuzzy Analytic Hierarchy Process (FAHP), and Certainty Factors (CF) to quantify ethical risks via an Ethical Risk Score (ERS) for each risk type. The final ERS combines the FAHP-derived weight, propagated CF, and risk level. The framework offers a robust mathematical approach for collaborative ERA modeling and systematic, step-by-step analysis. A case study confirms that ff4ERA yields context-sensitive, ethically meaningful risk scores reflecting both expert input and sensor-based evidence. Risk scores vary consistently with relevant factors while remaining robust to unrelated inputs. Local sensitivity analysis shows predictable, mostly monotonic behavior across perturbations, and global Sobol analysis highlights the dominant influence of expert-defined weights and certainty factors, validating the model design. Overall, the results demonstrate ff4ERA ability to produce interpretable, traceable, and risk-aware ethical assessments, enabling what-if analyses and guiding designers in calibrating membership functions and expert judgments for reliable ethical decision support.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube