Phase-fraction guided denoising diffusion model for augmenting multiphase steel microstructure segmentation via micrograph image-mask pair synthesis (2508.00896v1)
Abstract: The effectiveness of machine learning in metallographic microstructure segmentation is often constrained by the lack of human-annotated phase masks, particularly for rare or compositionally complex morphologies within the metal alloy. We introduce PF-DiffSeg, a phase-fraction controlled, one-stage denoising diffusion framework that jointly synthesizes microstructure images and their corresponding segmentation masks in a single generative trajectory to further improve segmentation accuracy. By conditioning on global phase-fraction vectors, augmented to represent real data distribution and emphasize minority classes, our model generates compositionally valid and structurally coherent microstructure image and mask samples that improve both data diversity and training efficiency. Evaluated on the MetalDAM benchmark for additively manufactured multiphase steel, our synthetic augmentation method yields notable improvements in segmentation accuracy compared to standard augmentation strategies especially in minority classes and further outperforms a two-stage mask-guided diffusion and generative adversarial network (GAN) baselines, while also reducing inference time compared to conventional approach. The method integrates generation and conditioning into a unified framework, offering a scalable solution for data augmentation in metallographic applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.