Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FRAM: Frobenius-Regularized Assignment Matching with Mixed-Precision Computing (2508.00887v1)

Published 26 Jul 2025 in cs.LG and cs.CV

Abstract: Graph matching, typically formulated as a Quadratic Assignment Problem (QAP), seeks to establish node correspondences between two graphs. To address the NP-hardness of QAP, some existing methods adopt projection-based relaxations that embed the problem into the convex hull of the discrete domain. However, these relaxations inevitably enlarge the feasible set, introducing two sources of error: numerical scale sensitivity and geometric misalignment between the relaxed and original domains. To alleviate these errors, we propose a novel relaxation framework by reformulating the projection step as a Frobenius-regularized Linear Assignment (FRA) problem, where a tunable regularization term mitigates feasible region inflation. This formulation enables normalization-based operations to preserve numerical scale invariance without compromising accuracy. To efficiently solve FRA, we propose the Scaling Doubly Stochastic Normalization (SDSN) algorithm. Building on its favorable computational properties, we develop a theoretically grounded mixed-precision architecture to achieve substantial acceleration. Comprehensive CPU-based benchmarks demonstrate that FRAM consistently outperforms all baseline methods under identical precision settings. When combined with a GPU-based mixed-precision architecture, FRAM achieves up to 370X speedup over its CPU-FP64 counterpart, with negligible loss in solution accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube