Papers
Topics
Authors
Recent
2000 character limit reached

Revisiting Ostrowski's Inequality

Published 14 Jul 2025 in math.GM | (2508.00854v1)

Abstract: The main objective of this paper is to present Ostrowski's inequality for a broader class of functions and to propose a refinement to the classical version of it. The original Ostrowski's inequality can be stated as follows "If $f:[a,b]\to\mathbb{R}$ is differentiable and $f'\in L{\infty}[a, b]$, then for any $p\in\,]a,b[\,$, the following functional inequality holds: \begin{equation*} \Bigg|f(p)-\dfrac{1}{b-a}\int_{a}{b}f(t)\,dt\Bigg|\leq \dfrac{(p-a)2+(b-p)2}{2(b-a)}\Big| f'\Big|ab\,.\,{{{{"}}}} \end{equation*} We relax the condition of differentiability and show that even if $f\in C[a,b]$ is non-differentiable at the points $p{{1}},\cdots,p{{n}}$, then for any $p\in\,]a,b[\,\setminus\overset{n}{\underset{i=1}{\cup}}{p{{i}}}$, the following Ostrowski-type inequality holds: \begin{align*} \left| f(p) - \frac{1}{b-a} \int{a}{b} f(t)\,dt \right| \leq \frac{1}{2} \max \Bigg{ & \left| f' \right|a{p_1}(p_1 - a),\,\ldots,\, \left| f' \right|{p_{i-1}}p (p - p_{i-1}),\, \left| f' \right|p{p_i} (p_i - p),\, \ & \ldots,\, \left| f' \right|{p_n}{b} (b - p_n) \Bigg} + \max \left{ f(a) + \sum_{i=1}n f(p_i),\, -\sum_{i=1}n f(p_i) - f(b) \right}. \end{align*} Also, we investigate the possibility of proposing a refinement for Ostrowski inequality. We prove that if $f'\in L{\infty}[a, b]$, then for any $p\in\,]a,b[$, we can restructure the inequality as follows: \begin{align*} \left| f(p) - \frac{1}{b-a} \int_{a}{b} f(t)\,dt \right| \leq \min \Bigg{ & \left \frac{1}{4} + \left( \frac{p - \frac{a + b}{2}}{b - a} \right)2 \right \left| f' \right|{a}{b}, \ &\quad + \frac{1}{2} \max \left{ (p - a) \left| f' \right|{a}{p},\, (b - p) \left| f' \right|_{p}{b} \right} \Bigg}. \end{align*}

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.