Democratizing Tabular Data Access with an Open$\unicode{x2013}$Source Synthetic$\unicode{x2013}$Data SDK (2508.00718v1)
Abstract: Machine learning development critically depends on access to high-quality data. However, increasing restrictions due to privacy, proprietary interests, and ethical concerns have created significant barriers to data accessibility. Synthetic data offers a viable solution by enabling safe, broad data usage without compromising sensitive information. This paper presents the MOSTLY AI Synthetic Data Software Development Kit (SDK), an open-source toolkit designed specifically for synthesizing high-quality tabular data. The SDK integrates robust features such as differential privacy guarantees, fairness-aware data generation, and automated quality assurance into a flexible and accessible Python interface. Leveraging the TabularARGN autoregressive framework, the SDK supports diverse data types and complex multi-table and sequential datasets, delivering competitive performance with notable improvements in speed and usability. Currently deployed both as a cloud service and locally installable software, the SDK has seen rapid adoption, highlighting its practicality in addressing real-world data bottlenecks and promoting widespread data democratization.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.