2000 character limit reached
Experimental Evaluation of Dynamic Topic Modeling Algorithms (2508.00710v1)
Published 1 Aug 2025 in cs.IR
Abstract: The amount of text generated daily on social media is gigantic and analyzing this text is useful for many purposes. To understand what lies beneath a huge amount of text, we need dependable and effective computing techniques from self-powered topic models. Nevertheless, there are currently relatively few thorough quantitative comparisons between these models. In this study, we compare these models and propose an assessment metric that documents how the topics change in time.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.