Papers
Topics
Authors
Recent
2000 character limit reached

Pro2Guard: Proactive Runtime Enforcement of LLM Agent Safety via Probabilistic Model Checking (2508.00500v1)

Published 1 Aug 2025 in cs.AI and cs.SE

Abstract: LLM agents exhibit powerful autonomous capabilities across domains such as robotics, virtual assistants, and web automation. However, their stochastic behavior introduces significant safety risks that are difficult to anticipate. Existing rule-based enforcement systems, such as AgentSpec, focus on developing reactive safety rules, which typically respond only when unsafe behavior is imminent or has already occurred. These systems lack foresight and struggle with long-horizon dependencies and distribution shifts. To address these limitations, we propose Pro2Guard, a proactive runtime enforcement framework grounded in probabilistic reachability analysis. Pro2Guard abstracts agent behaviors into symbolic states and learns a Discrete-Time Markov Chain (DTMC) from execution traces. At runtime, it anticipates future risks by estimating the probability of reaching unsafe states, triggering interventions before violations occur when the predicted risk exceeds a user-defined threshold. By incorporating semantic validity checks and leveraging PAC bounds, Pro2Guard ensures statistical reliability while approximating the underlying ground-truth model. We evaluate Pro2Guard extensively across two safety-critical domains: embodied household agents and autonomous vehicles. In embodied agent tasks, Pro2Guard enforces safety early on up to 93.6% of unsafe tasks using low thresholds, while configurable modes (e.g., reflect) allow balancing safety with task success, maintaining up to 80.4% task completion. In autonomous driving scenarios, Pro2Guard achieves 100% prediction of traffic law violations and collisions, anticipating risks up to 38.66 seconds ahead.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.