PIF-Net: Ill-Posed Prior Guided Multispectral and Hyperspectral Image Fusion via Invertible Mamba and Fusion-Aware LoRA (2508.00453v1)
Abstract: The goal of multispectral and hyperspectral image fusion (MHIF) is to generate high-quality images that simultaneously possess rich spectral information and fine spatial details. However, due to the inherent trade-off between spectral and spatial information and the limited availability of observations, this task is fundamentally ill-posed. Previous studies have not effectively addressed the ill-posed nature caused by data misalignment. To tackle this challenge, we propose a fusion framework named PIF-Net, which explicitly incorporates ill-posed priors to effectively fuse multispectral images and hyperspectral images. To balance global spectral modeling with computational efficiency, we design a method based on an invertible Mamba architecture that maintains information consistency during feature transformation and fusion, ensuring stable gradient flow and process reversibility. Furthermore, we introduce a novel fusion module called the Fusion-Aware Low-Rank Adaptation module, which dynamically calibrates spectral and spatial features while keeping the model lightweight. Extensive experiments on multiple benchmark datasets demonstrate that PIF-Net achieves significantly better image restoration performance than current state-of-the-art methods while maintaining model efficiency.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.