Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Benchmarking LLMs for Unit Test Generation from Real-World Functions (2508.00408v1)

Published 1 Aug 2025 in cs.SE and cs.CL

Abstract: Recently, LLMs have shown great promise in automating unit test generation, significantly reducing the manual effort required by developers. To effectively evaluate the capabilities of LLMs in this domain, it is crucial to have a well-designed benchmark that accurately reflects real-world scenarios and mitigates common pitfalls. Existing LLM test generation benchmarks are limited by two critical drawbacks: data contamination and structurally simple function code. As a result, we often cannot rely on the validity of scientific conclusions drawn from empirical studies using these limited benchmarks. The empirical evidence presented may be biased due to contamination and may fail to generalize beyond toy programs due to structural simplicity. To address these problems, we introduce ULT (UnLeakedTestbench), a new benchmark specifically designed for function-level unit test generation from real-world Python functions. ULT is constructed through a multi-stage curation process that ensures high cyclomatic complexity and mitigates test case contamination. With 3,909 carefully selected function-level tasks, ULT provides a more realistic and challenging evaluation of LLMs' test generation capabilities. We also provide PLT (PreLeakedTestbench), a pair benchmark of ULT with leaked tests designed to enable a controlled analysis of memorization versus reasoning in test generation. Our evaluation results demonstrate that ULT is significantly more challenging. For example, test cases generated by LLMs only achieve 41.32\%, 45.10\%, 30.22\%, and 40.21\% for accuracy, statement coverage, branch coverage, and mutation score on average for all LLMs, respectively. These results are substantially lower than the corresponding metrics on TestEval (91.79\%, 92.18\%, 82.04\%, and 49.69\%) and PLT (47.07\%, 55.13\%, 40.07\%, and 50.80\%).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.