Papers
Topics
Authors
Recent
2000 character limit reached

SAM-PTx: Text-Guided Fine-Tuning of SAM with Parameter-Efficient, Parallel-Text Adapters

Published 31 Jul 2025 in cs.CV and cs.LG | (2508.00213v1)

Abstract: The Segment Anything Model (SAM) has demonstrated impressive generalization in prompt-based segmentation. Yet, the potential of semantic text prompts remains underexplored compared to traditional spatial prompts like points and boxes. This paper introduces SAM-PTx, a parameter-efficient approach for adapting SAM using frozen CLIP-derived text embeddings as class-level semantic guidance. Specifically, we propose a lightweight adapter design called Parallel-Text that injects text embeddings into SAM's image encoder, enabling semantics-guided segmentation while keeping most of the original architecture frozen. Our adapter modifies only the MLP-parallel branch of each transformer block, preserving the attention pathway for spatial reasoning. Through supervised experiments and ablations on the COD10K dataset as well as low-data subsets of COCO and ADE20K, we show that incorporating fixed text embeddings as input improves segmentation performance over purely spatial prompt baselines. To our knowledge, this is the first work to use text prompts for segmentation on the COD10K dataset. These results suggest that integrating semantic conditioning into SAM's architecture offers a practical and scalable path for efficient adaptation with minimal computational complexity.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.