Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SHACL Validation under Graph Updates (Extended Paper) (2508.00137v1)

Published 31 Jul 2025 in cs.AI

Abstract: SHACL (SHApe Constraint Language) is a W3C standardized constraint language for RDF graphs. In this paper, we study SHACL validation in RDF graphs under updates. We present a SHACL-based update language that can capture intuitive and realistic modifications on RDF graphs and study the problem of static validation under such updates. This problem asks to verify whether every graph that validates a SHACL specification will still do so after applying a given update sequence. More importantly, it provides a basis for further services for reasoning about evolving RDF graphs. Using a regression technique that embeds the update actions into SHACL constraints, we show that static validation under updates can be reduced to (un)satisfiability of constraints in (a minor extension of) SHACL. We analyze the computational complexity of the static validation problem for SHACL and some key fragments. Finally, we present a prototype implementation that performs static validation and other static analysis tasks on SHACL constraints and demonstrate its behavior through preliminary experiments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube