Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Learning Like Humans: Resource-Efficient Federated Fine-Tuning through Cognitive Developmental Stages (2508.00041v1)

Published 31 Jul 2025 in cs.LG, cs.AI, and cs.DC

Abstract: Federated fine-tuning enables LLMs to adapt to downstream tasks while preserving data privacy, but its resource-intensive nature limits deployment on edge devices. In this paper, we introduce Developmental Federated Tuning (DevFT), a resource-efficient approach inspired by cognitive development that progressively builds a powerful LLM from a compact foundation. DevFT decomposes the fine-tuning process into developmental stages, each optimizing submodels with increasing parameter capacity. Knowledge from earlier stages transfers to subsequent submodels, providing optimized initialization parameters that prevent convergence to local minima and accelerate training. This paradigm mirrors human learning, gradually constructing comprehensive knowledge structure while refining existing skills. To efficiently build stage-specific submodels, DevFT introduces deconfliction-guided layer grouping and differential-based layer fusion to distill essential information and construct representative layers. Evaluations across multiple benchmarks demonstrate that DevFT significantly outperforms state-of-the-art methods, achieving up to 4.59$\times$ faster convergence, 10.67$\times$ reduction in communication overhead, and 9.07% average performance improvement, while maintaining compatibility with existing approaches.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube