Differentially Private Clipped-SGD: High-Probability Convergence with Arbitrary Clipping Level (2507.23512v1)
Abstract: Gradient clipping is a fundamental tool in Deep Learning, improving the high-probability convergence of stochastic first-order methods like SGD, AdaGrad, and Adam under heavy-tailed noise, which is common in training LLMs. It is also a crucial component of Differential Privacy (DP) mechanisms. However, existing high-probability convergence analyses typically require the clipping threshold to increase with the number of optimization steps, which is incompatible with standard DP mechanisms like the Gaussian mechanism. In this work, we close this gap by providing the first high-probability convergence analysis for DP-Clipped-SGD with a fixed clipping level, applicable to both convex and non-convex smooth optimization under heavy-tailed noise, characterized by a bounded central $\alpha$-th moment assumption, $\alpha \in (1,2]$. Our results show that, with a fixed clipping level, the method converges to a neighborhood of the optimal solution with a faster rate than the existing ones. The neighborhood can be balanced against the noise introduced by DP, providing a refined trade-off between convergence speed and privacy guarantees.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.