Assessing the Alignment of Automated Vehicle Decisions with Human Reasons (2507.23324v1)
Abstract: A key challenge in deploying automated vehicles (AVs) is ensuring they make appropriate decisions in ethically challenging everyday driving situations. While much attention has been paid to rare, high-stakes dilemmas such as trolley problems, similar tensions also arise in routine scenarios, such as navigating empty intersections, where multiple human considerations, including legality and comfort, often conflict. Current AV planning systems typically rely on rigid rules, which struggle to balance these competing considerations and can lead to behaviour that misaligns with human expectations. This paper proposes a novel reasons-based trajectory evaluation framework that operationalises the tracking condition of Meaningful Human Control (MHC). The framework models the reasons of human agents, such as regulatory compliance, as quantifiable functions and evaluates how well candidate AV trajectories align with these reasons. By assigning adjustable weights to agent priorities and integrating a balance function to discourage the exclusion of any agent, the framework supports interpretable decision evaluation. Through a real-world-inspired overtaking scenario, we show how this approach reveals tensions, for instance between regulatory compliance, efficiency, and comfort. The framework functions as a modular evaluation layer over existing planning algorithms. It offers a transparent tool for assessing ethical alignment in everyday scenarios and provides a practical step toward implementing MHC in real-world AV deployment.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.