Papers
Topics
Authors
Recent
Search
2000 character limit reached

Simulation-based inference for Precision Neutrino Physics through Neural Monte Carlo tuning

Published 31 Jul 2025 in physics.data-an, cs.LG, hep-ex, hep-ph, and physics.ins-det | (2507.23297v1)

Abstract: Precise modeling of detector energy response is crucial for next-generation neutrino experiments which present computational challenges due to lack of analytical likelihoods. We propose a solution using neural likelihood estimation within the simulation-based inference framework. We develop two complementary neural density estimators that model likelihoods of calibration data: conditional normalizing flows and a transformer-based regressor. We adopt JUNO - a large neutrino experiment - as a case study. The energy response of JUNO depends on several parameters, all of which should be tuned, given their non-linear behavior and strong correlations in the calibration data. To this end, we integrate the modeled likelihoods with Bayesian nested sampling for parameter inference, achieving uncertainties limited only by statistics with near-zero systematic biases. The normalizing flows model enables unbinned likelihood analysis, while the transformer provides an efficient binned alternative. By providing both options, our framework offers flexibility to choose the most appropriate method for specific needs. Finally, our approach establishes a template for similar applications across experimental neutrino and broader particle physics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.