ISO-Bench: Benchmarking Multimodal Causal Reasoning in Visual-Language Models through Procedural Plans (2507.23135v1)
Abstract: Understanding causal relationships across modalities is a core challenge for multimodal models operating in real-world environments. We introduce ISO-Bench, a benchmark for evaluating whether models can infer causal dependencies between visual observations and procedural text. Each example presents an image of a task step and a text snippet from a plan, with the goal of deciding whether the visual step occurs before or after the referenced text step. Evaluation results on ten frontier vision-LLMs show underwhelming performance: the best zero-shot F1 is only 0.57, and chain-of-thought reasoning yields only modest gains (up to 0.62 F1), largely behind humans (0.98 F1). Our analysis further highlights concrete directions for improving causal understanding in multimodal models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.