Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Protecting Vulnerable Voices: Synthetic Dataset Generation for Self-Disclosure Detection (2507.22930v1)

Published 24 Jul 2025 in cs.CL and cs.SI

Abstract: Social platforms such as Reddit have a network of communities of shared interests, with a prevalence of posts and comments from which one can infer users' Personal Information Identifiers (PIIs). While such self-disclosures can lead to rewarding social interactions, they pose privacy risks and the threat of online harms. Research into the identification and retrieval of such risky self-disclosures of PIIs is hampered by the lack of open-source labeled datasets. To foster reproducible research into PII-revealing text detection, we develop a novel methodology to create synthetic equivalents of PII-revealing data that can be safely shared. Our contributions include creating a taxonomy of 19 PII-revealing categories for vulnerable populations and the creation and release of a synthetic PII-labeled multi-text span dataset generated from 3 text generation LLMs, Llama2-7B, Llama3-8B, and zephyr-7b-beta, with sequential instruction prompting to resemble the original Reddit posts. The utility of our methodology to generate this synthetic dataset is evaluated with three metrics: First, we require reproducibility equivalence, i.e., results from training a model on the synthetic data should be comparable to those obtained by training the same models on the original posts. Second, we require that the synthetic data be unlinkable to the original users, through common mechanisms such as Google Search. Third, we wish to ensure that the synthetic data be indistinguishable from the original, i.e., trained humans should not be able to tell them apart. We release our dataset and code at https://netsys.surrey.ac.uk/datasets/synthetic-self-disclosure/ to foster reproducible research into PII privacy risks in online social media.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube