Teaching the Teacher: Improving Neural Network Distillability for Symbolic Regression via Jacobian Regularization (2507.22767v1)
Abstract: Distilling large neural networks into simple, human-readable symbolic formulas is a promising path toward trustworthy and interpretable AI. However, this process is often brittle, as the complex functions learned by standard networks are poor targets for symbolic discovery, resulting in low-fidelity student models. In this work, we propose a novel training paradigm to address this challenge. Instead of passively distilling a pre-trained network, we introduce a \textbf{Jacobian-based regularizer} that actively encourages the ``teacher'' network to learn functions that are not only accurate but also inherently smoother and more amenable to distillation. We demonstrate through extensive experiments on a suite of real-world regression benchmarks that our method is highly effective. By optimizing the regularization strength for each problem, we improve the $R2$ score of the final distilled symbolic model by an average of \textbf{120\% (relative)} compared to the standard distillation pipeline, all while maintaining the teacher's predictive accuracy. Our work presents a practical and principled method for significantly improving the fidelity of interpretable models extracted from complex neural networks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.