Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Benchmark Dataset and Evaluation Framework for Vietnamese Large Language Models in Customer Support (2507.22542v1)

Published 30 Jul 2025 in cs.CL

Abstract: With the rapid growth of Artificial Intelligence, LLMs have become essential for Question Answering (QA) systems, improving efficiency and reducing human workload in customer service. The emergence of Vietnamese LLMs (ViLLMs) highlights lightweight open-source models as a practical choice for their accuracy, efficiency, and privacy benefits. However, domain-specific evaluations remain limited, and the absence of benchmark datasets reflecting real customer interactions makes it difficult for enterprises to select suitable models for support applications. To address this gap, we introduce the Customer Support Conversations Dataset (CSConDa), a curated benchmark of over 9,000 QA pairs drawn from real interactions with human advisors at a large Vietnamese software company. Covering diverse topics such as pricing, product availability, and technical troubleshooting, CSConDa provides a representative basis for evaluating ViLLMs in practical scenarios. We further present a comprehensive evaluation framework, benchmarking 11 lightweight open-source ViLLMs on CSConDa with both automatic metrics and syntactic analysis to reveal model strengths, weaknesses, and linguistic patterns. This study offers insights into model behavior, explains performance differences, and identifies key areas for improvement, supporting the development of next-generation ViLLMs. By establishing a robust benchmark and systematic evaluation, our work enables informed model selection for customer service QA and advances research on Vietnamese LLMs. The dataset is publicly available at https://huggingface.co/datasets/ura-hcmut/Vietnamese-Customer-Support-QA.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.