Papers
Topics
Authors
Recent
2000 character limit reached

Whole-brain Transferable Representations from Large-Scale fMRI Data Improve Task-Evoked Brain Activity Decoding (2507.22378v1)

Published 30 Jul 2025 in eess.IV and cs.CV

Abstract: A fundamental challenge in neuroscience is to decode mental states from brain activity. While functional magnetic resonance imaging (fMRI) offers a non-invasive approach to capture brain-wide neural dynamics with high spatial precision, decoding from fMRI data -- particularly from task-evoked activity -- remains challenging due to its high dimensionality, low signal-to-noise ratio, and limited within-subject data. Here, we leverage recent advances in computer vision and propose STDA-SwiFT, a transformer-based model that learns transferable representations from large-scale fMRI datasets via spatial-temporal divided attention and self-supervised contrastive learning. Using pretrained voxel-wise representations from 995 subjects in the Human Connectome Project (HCP), we show that our model substantially improves downstream decoding performance of task-evoked activity across multiple sensory and cognitive domains, even with minimal data preprocessing. We demonstrate performance gains from larger receptor fields afforded by our memory-efficient attention mechanism, as well as the impact of functional relevance in pretraining data when fine-tuning on small samples. Our work showcases transfer learning as a viable approach to harness large-scale datasets to overcome challenges in decoding brain activity from fMRI data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: