Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Derivative Estimation from Coarse, Irregular, Noisy Samples: An MLE-Spline Approach (2507.22176v1)

Published 29 Jul 2025 in stat.ME, cs.SY, eess.SY, math.OC, and math.PR

Abstract: We address numerical differentiation under coarse, non-uniform sampling and Gaussian noise. A maximum-likelihood estimator with $L_2$-norm constraint on a higher-order derivative is obtained, yielding spline-based solution. We introduce a non-standard parameterization of quadratic splines and develop recursive online algorithms. Two formulations -- quadratic and zero-order -- offer tradeoff between smoothness and computational speed. Simulations demonstrate superior performance over high-gain observers and super-twisting differentiators under coarse sampling and high noise, benefiting systems where higher sampling rates are impractical.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.