IntentFlow: Interactive Support for Communicating Intent with LLMs in Writing Tasks (2507.22134v1)
Abstract: While LLMs are widely used for writing, users often struggle to express their nuanced and evolving intents through prompt-based interfaces. Intents -- low-level strategies or preferences for achieving a writing goal -- are often vague, fluid, or even subconscious, making it difficult for users to articulate and adjust them. To address this, we present IntentFlow, which supports the communication of dynamically evolving intents throughout LLM-assisted writing. IntentFlow extracts goals and intents from user prompts and presents them as editable interface components, which users can revise, remove, or refine via direct manipulation or follow-up prompts. Visual links connect each component to the output segments it influences, helping users understand model behavior. In a within-subjects study (N=12), participants using IntentFlow, compared to a chat-based baseline, expressed their intents more easily and in detail, engaged in more meaningful actions to communicate intents, such as adjusting and deleting, and produced outputs that better aligned with their evolving intents. We found that editable intent representations help users refine and consolidate a final set of intents, which can be reused across similar tasks to support consistent and transferable LLM-assisted writing.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.