Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Foundation Models for Demand Forecasting via Dual-Strategy Ensembling (2507.22053v1)

Published 29 Jul 2025 in cs.LG and cs.AI

Abstract: Accurate demand forecasting is critical for supply chain optimization, yet remains difficult in practice due to hierarchical complexity, domain shifts, and evolving external factors. While recent foundation models offer strong potential for time series forecasting, they often suffer from architectural rigidity and limited robustness under distributional change. In this paper, we propose a unified ensemble framework that enhances the performance of foundation models for sales forecasting in real-world supply chains. Our method combines two complementary strategies: (1) Hierarchical Ensemble (HE), which partitions training and inference by semantic levels (e.g., store, category, department) to capture localized patterns; and (2) Architectural Ensemble (AE), which integrates predictions from diverse model backbones to mitigate bias and improve stability. We conduct extensive experiments on the M5 benchmark and three external sales datasets, covering both in-domain and zero-shot forecasting. Results show that our approach consistently outperforms strong baselines, improves accuracy across hierarchical levels, and provides a simple yet effective mechanism for boosting generalization in complex forecasting environments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com