SLA-Centric Automated Algorithm Selection Framework for Cloud Environments
Abstract: Cloud computing offers on-demand resource access, regulated by Service-Level Agreements (SLAs) between consumers and Cloud Service Providers (CSPs). SLA violations can impact efficiency and CSP profitability. In this work, we propose an SLA-aware automated algorithm-selection framework for combinatorial optimization problems in resource-constrained cloud environments. The framework uses an ensemble of machine learning models to predict performance and rank algorithm-hardware pairs based on SLA constraints. We also apply our framework to the 0-1 knapsack problem. We curate a dataset comprising instance specific features along with memory usage, runtime, and optimality gap for 6 algorithms. As an empirical benchmark, we evaluate the framework on both classification and regression tasks. Our ablation study explores the impact of hyperparameters, learning approaches, and LLMs effectiveness in regression, and SHAP-based interpretability.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.