Why not? Developing ABox Abduction beyond Repairs (2507.21955v1)
Abstract: Abduction is the task of computing a sufficient extension of a knowledge base (KB) that entails a conclusion not entailed by the original KB. It serves to compute explanations, or hypotheses, for such missing entailments. While this task has been intensively investigated for perfect data and under classical semantics, less is known about abduction when erroneous data results in inconsistent KBs. In this paper we define a suitable notion of abduction under repair semantics, and propose a set of minimality criteria that guides abduction towards `useful' hypotheses. We provide initial complexity results on deciding existence of and verifying abductive solutions with these criteria, under different repair semantics and for the description logics DL-Lite and EL_bot.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.