Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Introducing HALC: A general pipeline for finding optimal prompting strategies for automated coding with LLMs in the computational social sciences (2507.21831v1)

Published 29 Jul 2025 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs are seeing widespread use for task automation, including automated coding in the social sciences. However, even though researchers have proposed different prompting strategies, their effectiveness varies across LLMs and tasks. Often trial and error practices are still widespread. We propose HALC$-$a general pipeline that allows for the systematic and reliable construction of optimal prompts for any given coding task and model, permitting the integration of any prompting strategy deemed relevant. To investigate LLM coding and validate our pipeline, we sent a total of 1,512 individual prompts to our local LLMs in over two million requests. We test prompting strategies and LLM task performance based on few expert codings (ground truth). When compared to these expert codings, we find prompts that code reliably for single variables (${\alpha}$climate = .76; ${\alpha}$movement = .78) and across two variables (${\alpha}$climate = .71; ${\alpha}$movement = .74) using the LLM Mistral NeMo. Our prompting strategies are set up in a way that aligns the LLM to our codebook$-$we are not optimizing our codebook for LLM friendliness. Our paper provides insights into the effectiveness of different prompting strategies, crucial influencing factors, and the identification of reliable prompts for each coding task and model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube