Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

DGP: A Dual-Granularity Prompting Framework for Fraud Detection with Graph-Enhanced LLMs (2507.21653v1)

Published 29 Jul 2025 in cs.LG and cs.AI

Abstract: Real-world fraud detection applications benefit from graph learning techniques that jointly exploit node features, often rich in textual data, and graph structural information. Recently, Graph-Enhanced LLMs emerge as a promising graph learning approach that converts graph information into prompts, exploiting LLMs' ability to reason over both textual and structural information. Among them, text-only prompting, which converts graph information to prompts consisting solely of text tokens, offers a solution that relies only on LLM tuning without requiring additional graph-specific encoders. However, text-only prompting struggles on heterogeneous fraud-detection graphs: multi-hop relations expand exponentially with each additional hop, leading to rapidly growing neighborhoods associated with dense textual information. These neighborhoods may overwhelm the model with long, irrelevant content in the prompt and suppress key signals from the target node, thereby degrading performance. To address this challenge, we propose Dual Granularity Prompting (DGP), which mitigates information overload by preserving fine-grained textual details for the target node while summarizing neighbor information into coarse-grained text prompts. DGP introduces tailored summarization strategies for different data modalities, bi-level semantic abstraction for textual fields and statistical aggregation for numerical features, enabling effective compression of verbose neighbor content into concise, informative prompts. Experiments across public and industrial datasets demonstrate that DGP operates within a manageable token budget while improving fraud detection performance by up to 6.8% (AUPRC) over state-of-the-art methods, showing the potential of Graph-Enhanced LLMs for fraud detection.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube