Papers
Topics
Authors
Recent
2000 character limit reached

NCCR: to Evaluate the Robustness of Neural Networks and Adversarial Examples (2507.21483v1)

Published 29 Jul 2025 in cs.CR and cs.AI

Abstract: Neural networks have received a lot of attention recently, and related security issues have come with it. Many studies have shown that neural networks are vulnerable to adversarial examples that have been artificially perturbed with modification, which is too small to be distinguishable by human perception. Different attacks and defenses have been proposed to solve these problems, but there is little research on evaluating the robustness of neural networks and their inputs. In this work, we propose a metric called the neuron cover change rate (NCCR) to measure the ability of deep learning models to resist attacks and the stability of adversarial examples. NCCR monitors alterations in the output of specifically chosen neurons when the input is perturbed, and networks with a smaller degree of variation are considered to be more robust. The results of the experiment on image recognition and the speaker recognition model show that our metrics can provide a good assessment of the robustness of neural networks or their inputs. It can also be used to detect whether an input is adversarial or not, as adversarial examples are always less robust.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.