Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Data Retrieval and Comparative Bias Analysis of Recommendation Algorithms for YouTube Shorts and Long-Form Videos (2507.21467v1)

Published 29 Jul 2025 in cs.IR and cs.SI

Abstract: The growing popularity of short-form video content, such as YouTube Shorts, has transformed user engagement on digital platforms, raising critical questions about the role of recommendation algorithms in shaping user experiences. These algorithms significantly influence content consumption, yet concerns about biases, echo chambers, and content diversity persist. This study develops an efficient data collection framework to analyze YouTube's recommendation algorithms for both short-form and long-form videos, employing parallel computing and advanced scraping techniques to overcome limitations of YouTube's API. The analysis uncovers distinct behavioral patterns in recommendation algorithms across the two formats, with short-form videos showing a more immediate shift toward engaging yet less diverse content compared to long-form videos. Furthermore, a novel investigation into biases in politically sensitive topics, such as the South China Sea dispute, highlights the role of these algorithms in shaping narratives and amplifying specific viewpoints. By providing actionable insights for designing equitable and transparent recommendation systems, this research underscores the importance of responsible AI practices in the evolving digital media landscape.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.