Papers
Topics
Authors
Recent
2000 character limit reached

MemShare: Memory Efficient Inference for Large Reasoning Models through KV Cache Reuse (2507.21433v1)

Published 29 Jul 2025 in cs.LG and cs.AI

Abstract: Large Reasoning Models (LRMs) have achieved significant advances in mathematical reasoning and formal logic tasks. However, their tendency to generate lengthy chain-of-thought sequences leads to substantial memory overhead during inference. We observe that LRMs frequently produce highly similar intermediate reasoning steps, which correspond to similar KV cache states across layers. Motivated by this observation, we propose MemShare, a novel KV cache management approach that effectively reduces memory overhead. MemShare employs a collaborative filtering algorithm to efficiently identify reusable KV cache blocks and enables zero copy cache reuse to significantly reduce memory overhead, improve throughput while maintaining accuracy. Experimental results demonstrate that MemShare delivers up to 84.79\% improvement in throughput while maintaining better accuracy compared to existing KV cache management methods.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.

Youtube Logo Streamline Icon: https://streamlinehq.com