Papers
Topics
Authors
Recent
2000 character limit reached

Enabling Pareto-Stationarity Exploration in Multi-Objective Reinforcement Learning: A Multi-Objective Weighted-Chebyshev Actor-Critic Approach (2507.21397v1)

Published 29 Jul 2025 in cs.LG

Abstract: In many multi-objective reinforcement learning (MORL) applications, being able to systematically explore the Pareto-stationary solutions under multiple non-convex reward objectives with theoretical finite-time sample complexity guarantee is an important and yet under-explored problem. This motivates us to take the first step and fill the important gap in MORL. Specifically, in this paper, we propose a \uline{M}ulti-\uline{O}bjective weighted-\uline{CH}ebyshev \uline{A}ctor-critic (MOCHA) algorithm for MORL, which judiciously integrates the weighted-Chebychev (WC) and actor-critic framework to enable Pareto-stationarity exploration systematically with finite-time sample complexity guarantee. Sample complexity result of MOCHA algorithm reveals an interesting dependency on $p_{\min}$ in finding an $\epsilon$-Pareto-stationary solution, where $p_{\min}$ denotes the minimum entry of a given weight vector $\mathbf{p}$ in WC-scarlarization. By carefully choosing learning rates, the sample complexity for each exploration can be $\tilde{\mathcal{O}}(\epsilon{-2})$. Furthermore, simulation studies on a large KuaiRand offline dataset, show that the performance of MOCHA algorithm significantly outperforms other baseline MORL approaches.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.