Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning-based Cell DTX/DRX Configuration for Network Energy Saving (2507.21385v1)

Published 28 Jul 2025 in cs.NI and cs.AI

Abstract: 3GPP Release 18 cell discontinuous transmission and reception (cell DTX/DRX) is an important new network energy saving feature for 5G. As a time-domain technique, it periodically aggregates the user data transmissions in a given duration of time when the traffic load is not heavy, so that the remaining time can be kept silent and advanced sleep modes (ASM) can be enabled to shut down more radio components and save more energy for the cell. However, inevitably the packet delay is increased, as during the silent period no transmission is allowed. In this paper we study how to configure cell DTX/DRX to optimally balance energy saving and packet delay, so that for delay-sensitive traffic maximum energy saving can be achieved while the degradation of quality of service (QoS) is minimized. As the optimal configuration can be different for different network and traffic conditions, the problem is complex and we resort to deep reinforcement learning (DRL) framework to train an AI agent to solve it. Through careful design of 1) the learning algorithm, which implements a deep Q-network (DQN) on a contextual bandit (CB) model, and 2) the reward function, which utilizes a smooth approximation of a theoretically optimal but discontinuous reward function, we are able to train an AI agent that always tries to select the best possible Cell DTX/DRX configuration under any network and traffic conditions. Simulation results show that compared to the case when cell DTX/DRX is not used, our agent can achieve up to ~45% energy saving depending on the traffic load scenario, while always maintaining no more than ~1% QoS degradation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.