Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

DEM-NeRF: A Neuro-Symbolic Method for Scientific Discovery through Physics-Informed Simulation (2507.21350v1)

Published 28 Jul 2025 in cs.LG

Abstract: Neural networks have emerged as a powerful tool for modeling physical systems, offering the ability to learn complex representations from limited data while integrating foundational scientific knowledge. In particular, neuro-symbolic approaches that combine data-driven learning, the neuro, with symbolic equations and rules, the symbolic, address the tension between methods that are purely empirical, which risk straying from established physical principles, and traditional numerical solvers that demand complete geometric knowledge and can be prohibitively expensive for high-fidelity simulations. In this work, we present a novel neuro-symbolic framework for reconstructing and simulating elastic objects directly from sparse multi-view image sequences, without requiring explicit geometric information. Specifically, we integrate a neural radiance field (NeRF) for object reconstruction with physics-informed neural networks (PINN) that incorporate the governing partial differential equations of elasticity. In doing so, our method learns a spatiotemporal representation of deforming objects that leverages both image supervision and symbolic physical constraints. To handle complex boundary and initial conditions, which are traditionally confronted using finite element methods, boundary element methods, or sensor-based measurements, we employ an energy-constrained Physics-Informed Neural Network architecture. This design enhances both simulation accuracy and the explainability of results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube