Adaptive Multimodal Protein Plug-and-Play with Diffusion-Based Priors (2507.21260v1)
Abstract: In an inverse problem, the goal is to recover an unknown parameter (e.g., an image) that has typically undergone some lossy or noisy transformation during measurement. Recently, deep generative models, particularly diffusion models, have emerged as powerful priors for protein structure generation. However, integrating noisy experimental data from multiple sources to guide these models remains a significant challenge. Existing methods often require precise knowledge of experimental noise levels and manually tuned weights for each data modality. In this work, we introduce Adam-PnP, a Plug-and-Play framework that guides a pre-trained protein diffusion model using gradients from multiple, heterogeneous experimental sources. Our framework features an adaptive noise estimation scheme and a dynamic modality weighting mechanism integrated into the diffusion process, which reduce the need for manual hyperparameter tuning. Experiments on complex reconstruction tasks demonstrate significantly improved accuracy using Adam-PnP.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.