Comparative Analysis of Vision Transformers and Convolutional Neural Networks for Medical Image Classification (2507.21156v1)
Abstract: The emergence of Vision Transformers (ViTs) has revolutionized computer vision, yet their effectiveness compared to traditional Convolutional Neural Networks (CNNs) in medical imaging remains under-explored. This study presents a comprehensive comparative analysis of CNN and ViT architectures across three critical medical imaging tasks: chest X-ray pneumonia detection, brain tumor classification, and skin cancer melanoma detection. We evaluated four state-of-the-art models - ResNet-50, EfficientNet-B0, ViT-Base, and DeiT-Small - across datasets totaling 8,469 medical images. Our results demonstrate task-specific model advantages: ResNet-50 achieved 98.37% accuracy on chest X-ray classification, DeiT-Small excelled at brain tumor detection with 92.16% accuracy, and EfficientNet-B0 led skin cancer classification at 81.84% accuracy. These findings provide crucial insights for practitioners selecting architectures for medical AI applications, highlighting the importance of task-specific architecture selection in clinical decision support systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.