Papers
Topics
Authors
Recent
2000 character limit reached

Uncertainty-driven Embedding Convolution

Published 28 Jul 2025 in cs.LG | (2507.20718v1)

Abstract: Text embeddings are essential components in modern NLP pipelines. While numerous embedding models have been proposed, their performance varies across domains, and no single model consistently excels across all tasks. This variability motivates the use of ensemble techniques to combine complementary strengths. However, most existing ensemble methods operate on deterministic embeddings and fail to account for model-specific uncertainty, limiting their robustness and reliability in downstream applications. To address these limitations, we propose Uncertainty-driven Embedding Convolution (UEC). UEC first transforms deterministic embeddings into probabilistic ones in a post-hoc manner. It then computes adaptive ensemble weights based on embedding uncertainty, grounded in a Bayes-optimal solution under a surrogate loss. Additionally, UEC introduces an uncertainty-aware similarity function that directly incorporates uncertainty into similarity scoring. Extensive experiments on retrieval, classification, and semantic similarity benchmarks demonstrate that UEC consistently improves both performance and robustness by leveraging principled uncertainty modeling.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.