CONCAP: Seeing Beyond English with Concepts Retrieval-Augmented Captioning (2507.20411v1)
Abstract: Multilingual vision-LLMs have made significant strides in image captioning, yet they still lag behind their English counterparts due to limited multilingual training data and costly large-scale model parameterization. Retrieval-augmented generation (RAG) offers a promising alternative by conditioning caption generation on retrieved examples in the target language, reducing the need for extensive multilingual training. However, multilingual RAG captioning models often depend on retrieved captions translated from English, which can introduce mismatches and linguistic biases relative to the source language. We introduce CONCAP, a multilingual image captioning model that integrates retrieved captions with image-specific concepts, enhancing the contextualization of the input image and grounding the captioning process across different languages. Experiments on the XM3600 dataset indicate that CONCAP enables strong performance on low- and mid-resource languages, with highly reduced data requirements. Our findings highlight the effectiveness of concept-aware retrieval augmentation in bridging multilingual performance gaps.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.