Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Beyond Value Functions: Single-Loop Bilevel Optimization under Flatness Conditions (2507.20400v1)

Published 27 Jul 2025 in math.OC

Abstract: Bilevel optimization, a hierarchical optimization paradigm, has gained significant attention in a wide range of practical applications, notably in the fine-tuning of generative models. However, due to the nested problem structure, most existing algorithms require either the Hessian vector calculation or the nested loop updates, which are computationally inefficient in LLM fine-tuning. In this paper, building upon the fully first-order penalty-based approach, we propose an efficient value function-free (PBGD-Free) algorithm that eliminates the loop of solving the lower-level problem and admits fully single-loop updates. Inspired by the landscape analysis of representation learning-based LLM fine-tuning problem, we propose a relaxed flatness condition for the upper-level function and prove the convergence of the proposed value-function-free algorithm. We test the performance of the proposed algorithm in various applications and demonstrate its superior computational efficiency over the state-of-the-art bilevel methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.