Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MazeEval: A Benchmark for Testing Sequential Decision-Making in Language Models (2507.20395v1)

Published 27 Jul 2025 in cs.AI

Abstract: As LLMs increasingly power autonomous agents in robotics and embodied AI, understanding their spatial reasoning capabilities becomes crucial for ensuring reliable real-world deployment. Despite advances in language understanding, current research lacks evaluation of how LLMs perform spatial navigation without visual cues, a fundamental requirement for agents operating with limited sensory information. This paper addresses this gap by introducing MazeEval, a benchmark designed to isolate and evaluate pure spatial reasoning in LLMs through coordinate-based maze navigation tasks. Our methodology employs a function-calling interface where models navigate mazes of varying complexity ($5\times 5$ to $15\times 15$ grids) using only coordinate feedback and distance-to-wall information, excluding visual input to test fundamental spatial cognition. We evaluate eight state-of-the-art LLMs across identical mazes in both English and Icelandic to assess cross-linguistic transfer of spatial abilities. Our findings reveal striking disparities: while OpenAI's O3 achieves perfect navigation for mazes up to size $30\times 30$, other models exhibit catastrophic failure beyond $9\times 9$ mazes, with 100% of failures attributed to excessive looping behavior where models revisit a cell at least 10 times. We document a significant performance degradation in Icelandic, with models solving mazes 3-4 sizes smaller than in English, suggesting spatial reasoning in LLMs emerges from linguistic patterns rather than language-agnostic mechanisms. These results have important implications for global deployment of LLM-powered autonomous systems, showing spatial intelligence remains fundamentally constrained by training data availability and highlighting the need for architectural innovations to achieve reliable navigation across linguistic contexts.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com