Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deterministic Almost-Linear-Time Gomory-Hu Trees (2507.20354v1)

Published 27 Jul 2025 in cs.DS

Abstract: Given an $m$-edge, undirected, weighted graph $G=(V,E,w)$, a Gomory-Hu tree $T$ (Gomory and Hu, 1961) is a tree over the vertex set $V$ such that all-pairs mincuts in $G$ are preserved exactly in $T$. In this article, we give the first almost-optimal $m{1+o(1)}$-time deterministic algorithm for constructing a Gomory-Hu tree. Prior to our work, the best deterministic algorithm for this problem dated back to the original algorithm of Gomory and Hu that runs in $nm{1+o(1)}$ time (using current maxflow algorithms). In fact, this is the first almost-linear time deterministic algorithm for even simpler problems, such as finding the $k$-edge-connected components of a graph. Our new result hinges on two separate and novel components that each introduce a distinct set of de-randomization tools of independent interest: - a deterministic reduction from the all-pairs mincuts problem to the single-souce mincuts problem incurring only subpolynomial overhead, and - a deterministic almost-linear time algorithm for the single-source mincuts problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: