Towards Generalized Parameter Tuning in Coherent Ising Machines: A Portfolio-Based Approach (2507.20295v1)
Abstract: Coherent Ising Machines (CIMs) have recently gained attention as a promising computing model for solving combinatorial optimization problems. In particular, the Chaotic Amplitude Control (CAC) algorithm has demonstrated high solution quality, but its performance is highly sensitive to a large number of hyperparameters, making efficient tuning essential. In this study, we present an algorithm portfolio approach for hyperparameter tuning in CIMs employing Chaotic Amplitude Control with momentum (CACm) algorithm. Our method incorporates multiple search strategies, enabling flexible and effective adaptation to the characteristics of the hyperparameter space. Specifically, we propose two representative tuning methods, Method A and Method B. Method A optimizes each hyperparameter sequentially with a fixed total number of trials, while Method B prioritizes hyperparameters based on initial evaluations before applying Method A in order. Performance evaluations were conducted on the Supercomputer "Flow" at Nagoya University, using planted Wishart instances and Time to Solution (TTS) as the evaluation metric. Compared to the baseline performance with best-known hyperparameters, Method A achieved up to 1.47x improvement, and Method B achieved up to 1.65x improvement. These results demonstrate the effectiveness of the algorithm portfolio approach in enhancing the tuning process for CIMs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.