KB-DMGen: Knowledge-Based Global Guidance and Dynamic Pose Masking for Human Image Generation
Abstract: Recent methods using diffusion models have made significant progress in human image generation with various control signals such as pose priors. In portrait generation, both the accuracy of human pose and the overall visual quality are crucial for realistic synthesis. Most existing methods focus on controlling the accuracy of generated poses, but ignore the quality assurance of the entire image. In order to ensure the global image quality and pose accuracy, we propose Knowledge-Based Global Guidance and Dynamic pose Masking for human image Generation (KB-DMGen). The Knowledge Base (KB) is designed not only to enhance pose accuracy but also to leverage image feature information to maintain overall image quality. Dynamic Masking (DM) dynamically adjusts the importance of pose-related regions. Experiments demonstrate the effectiveness of our model, achieving new state-of-the-art results in terms of AP and CAP on the HumanArt dataset. The code will be made publicly available.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.