Discrete Gaussian Vector Fields On Meshes (2507.20024v1)
Abstract: Though the underlying fields associated with vector-valued environmental data are continuous, observations themselves are discrete. For example, climate models typically output grid-based representations of wind fields or ocean currents, and these are often downscaled to a discrete set of points. By treating the area of interest as a two-dimensional manifold that can be represented as a triangular mesh and embedded in Euclidean space, this work shows that discrete intrinsic Gaussian processes for vector-valued data can be developed from discrete differential operators defined with respect to a mesh. These Gaussian processes account for the geometry and curvature of the manifold whilst also providing a flexible and practical formulation that can be readily applied to any two-dimensional mesh. We show that these models can capture harmonic flows, incorporate boundary conditions, and model non-stationary data. Finally, we apply these models to downscaling stationary and non-stationary gridded wind data on the globe, and to inference of ocean currents from sparse observations in bounded domains.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.