Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Disjoint Generative Models (2507.19700v1)

Published 25 Jul 2025 in cs.LG

Abstract: We propose a new framework for generating cross-sectional synthetic datasets via disjoint generative models. In this paradigm, a dataset is partitioned into disjoint subsets that are supplied to separate instances of generative models. The results are then combined post hoc by a joining operation that works in the absence of common variables/identifiers. The success of the framework is demonstrated through several case studies and examples on tabular data that helps illuminate some of the design choices that one may make. The principal benefit of disjoint generative models is significantly increased privacy at only a low utility cost. Additional findings include increased effectiveness and feasibility for certain model types and the possibility for mixed-model synthesis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.