Papers
Topics
Authors
Recent
2000 character limit reached

SLENet: A Novel Multiscale CNN-Based Network for Detecting the Rats Estrous Cycle (2507.19566v1)

Published 25 Jul 2025 in eess.IV

Abstract: In clinical medicine, rats are commonly used as experimental subjects. However, their estrous cycle significantly impacts their biological responses, leading to differences in experimental results. Therefore, accurately determining the estrous cycle is crucial for minimizing interference. Manually identifying the estrous cycle in rats presents several challenges, including high costs, long training periods, and subjectivity. To address these issues, this paper proposes a classification network-Spatial Long-distance EfficientNet (SLENet). This network is designed based on EfficientNet, specifically modifying the Mobile Inverted Bottleneck Convolution (MBConv) module by introducing a novel Spatial Efficient Channel Attention (SECA) mechanism to replace the original Squeeze Excitation (SE) module. Additionally, a Non-local attention mechanism is incorporated after the last convolutional layer to enhance the network's ability to capture long-range dependencies. The dataset used 2,655 microscopic images of rat vaginal epithelial cells, with 531 images in the test set. Experimental results indicate that SLENet achieved an accuracy of 96.31%, outperforming baseline EfficientNet model (94.2%). This finding provide practical value for optimizing experimental design in rat-based studies such as reproductive and pharmacological research, but this study is limited to microscopy image data, without considering other factors like temporal patterns, thus, incorporating multi-modal input is necessary for future application.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.