Harnessing intuitive local evolution rules for physical learning
Abstract: Machine Learning, however popular and accessible, is computationally intensive and highly power-consuming, prompting interest in alternative physical implementations of learning tasks. We introduce a training scheme for physical systems that minimize power dissipation in which only boundary parameters (i.e. inputs and outputs) are externally controlled. Using this scheme, these Boundary-Enabled Adaptive State Tuning Systems (BEASTS) learn by exploiting local physical rules. Our scheme, BEASTAL (BEAST-Adaline), is the closest analog of the Adaline algorithm for such systems. We demonstrate this autonomous learning in silico for regression and classification tasks. Our approach advances previous physical learning schemes by using intuitive, local evolution rules without requiring large-scale memory or complex internal architectures. BEASTAL can perform any linear task, achieving best performance when the local evolution rule is non-linear.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.