Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Let It Go? Not Quite: Addressing Item Cold Start in Sequential Recommendations with Content-Based Initialization (2507.19473v1)

Published 25 Jul 2025 in cs.IR, cs.AI, and cs.LG

Abstract: Many sequential recommender systems suffer from the cold start problem, where items with few or no interactions cannot be effectively used by the model due to the absence of a trained embedding. Content-based approaches, which leverage item metadata, are commonly used in such scenarios. One possible way is to use embeddings derived from content features such as textual descriptions as initialization for the model embeddings. However, directly using frozen content embeddings often results in suboptimal performance, as they may not fully adapt to the recommendation task. On the other hand, fine-tuning these embeddings can degrade performance for cold-start items, as item representations may drift far from their original structure after training. We propose a novel approach to address this limitation. Instead of entirely freezing the content embeddings or fine-tuning them extensively, we introduce a small trainable delta to frozen embeddings that enables the model to adapt item representations without letting them go too far from their original semantic structure. This approach demonstrates consistent improvements across multiple datasets and modalities, including e-commerce datasets with textual descriptions and a music dataset with audio-based representation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.